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Modeling Cyclic Melting and Refreezing
in a Hollow Metal Canister

D. G. Wilson, and R. E. Flanery

ABSTRACT

This report documents the mathematical model and computational algorithms used in a
pair of computer prcgrams that do energy redistribution calculations as part of a
comprehensive simnlation for thermal and structural analyses of one component of a
thermal energy storage system for the manned space station. The complete problem
includes cyclic melting and refreezing, fluid flow, and void formation and movement, as
weli as conductive and convective heat transfer in a three dimensional setting. ThLe
problem is posed in a hollow, metal canister filled with a high temperature phase change
material. The heat transfer equations discussed here consist of a pair of partial differential
equations for energy transfer (one linear the other mildly nonlinear), coupled with a
constitutive relation for energy and temperature. This constitutes a weak, "enthalpy”
formulation of the phase change problem. The partial differential equations are
approximated by a system of coupled Crank Nicholson-type finite difference equations.
These nonlinear, implicit equations are solved for enthalpy (energy content) and
temperature fields simnltaneously. A successive overrelaxation iteration scheme with
red/black ordering is used to solve the nonlinear difference equations. The algorithms have

been vectorized for rapid execution on the Cray X-MP supercomputer and techniques used
to do this are discussed.




1. INTRODUCTION

It is intended that the manned space station satisfy a considerable portion of its power
requirements with solar energy. The station will orbit the earth in about ninety minutes
and spend about two thirds of each orbit in sunlight and about one third in the earth's
shadow. Under these conditions it will be necessary to store thermal energy during the
station’s exposure to the sun and to retrieve it during the transit through the earth’s
shadow. Several systems have been proposed for accomplishing this. In this report we
describe in rough outline one such system and in much more detail the mathematical and
computational model used in the heat flow portion of a simulation of its performance.

The system considered consists of a solar collector lined with small metal canisters
filled with a high temperature phase change material (PCM), lithium fluoride salt. The
canisters are small enough to fit comfortably in the palm of one's hand and there are more
than a hundred of them. A heat transfer fluid, an inert gas such as helium or neon,
circulates through pipes that pass through the metal canisters and carries heat away to
supply energy to turbines, generators, etc. The continual melting and refreezing of the
PCM distributes over time the delivery of the solar energy to the transfer fluid and hence
to the heat engines beyond. The motivation for using a PCM based thermal energy storage
system is that a properly sized such system can store and deliver energy over a narrow
temperature range near the melting point of the PCM thus avoiding temperature extremes.

A multitude of problems must be solved to design a satisfactory system. To list a few:
The size of the solar collector must be matched with the power requirements of the
station. The capacity of the energy storage system must be such that the PCM just about
completely melts during the insolation period and just about completely freezes during the
dark period. (Otherwise the advantage of the PCM is lost.) The canister material and its
design must be adequate to withstand the frequent meltings and freezings of the PCM, and

the resulting mechanical stresses, for many cycles.




A computer simulation of the continual thermal energy redistribution in a
representative canister has been developed for the Advanced Solar Dynamics Program
(ASDP) at NASA Lewis Research Center. Several modules, including two containing the
model and algorithms described here, make up a code named "NORVEX." This code will
be used in support of a series of flight experiments proposed by ASDP to evaluate
components of the proposed system.

The complete mathematical problem consists of a system of coupled, mildly nonlinear,
partial differential equations for heat flow and fluid flow in a representative canister
coupled with a constitutive relation between energy and temperature and equations for
development and movement of a vapor filled void. There will be fluid flow in the liquid
PCM, even in a microgravity environment, because there is a significant difference in
density between solid and liquid PCM. The density change on melting and freezing causes
the formation of a vapor filled void on freezing and, of course, the disappearance of the
void on remelting. What is described in this document is only that part of the simulation
dealing with heat flow in the canister and the enclosed PCM. Except for the little said in
this introduction, the description of the fluid flow problem and its numerical solution and
the modeling of the void development and movement is left to other reports.

In brief the problem is as follows. A right circular cylindrical canister is filled with a
high temperature PCM. An enclosed cylindrical pipe runs down the center of the canister.
To simulate the heat transfer fluid flowing in this pipe, and to model the flight experiments
proposed by ASDP to evaluate system components, it has been assumed that a solid nickel
cylinder is encl.sed by and attached to this inner pipe. Periodic flux boundary conditions
are supplied at ths outer cylindrical surface of the canister and zero flux at its end faces.
Internal boundary conditions between canister and PCM, and between canister and
enclosed nickel cylinder, insure conservation of energy. (The enclosed nickel cylinder

radiates energy to the sky, at a flared end exterior to the canister, via radiative heat




transfer; but descriptions of the simulation of heat transfer in this nickel cylinder and its
radiation to the sky are omitted from this report. These, and other aspects of the
simulation not described here, are documented in the final report.)

For this document, the fluid elocities, void location and temperature field in the
enclosed nickel conductor are assumed to be known at each time step. These are computed
in separate modules of the complete simulation. Beyond the following three sentences,
these are not discussed in this document. In the fluid low module, the movement of the
liquid PCM is modeled using a weak formulation of the incompressible Navier Stokes
equations. The phase transition region is treated as a porous medium that inhibits fluid
flow but also introduces the density change that acts as a source for the fluid flow. The
boundary conditions on the fluid flow problem are: "no slip” at the walls of the canister,
i. e. all velocity compouents are zero there, and conservation of mass and momentum at
the surface of the void.

Heat flow in the containing, metal canister is modeled using the partial differential
equation for conductive heat transfer in cylindrical polar coordinates. The boundary
conditions on the heat flow problem in the canister are: imposed flux on the outer
surfaces, and continuity of flux across the interfaces between canister and PCM and
between canister and enclosed nickel cylinder. An "enthalpy formulation® that pernits
easy treatment of the successive melting and freezing cycles is used to model the heat flow
in the PCM. In this formulation, the dependent variable in the partial differential equation
is enthalpy content instead of temperature, and a constitutive relation gives temperature as
a function of enthalpy. A convection term is included to account for the heat transfer
caused by bulk movement of the liquid. The boundary conditions on the heat flow
problem in the PCM are just that energy be conserved at the canister walls.

The complete system of coupled, mildly nonlinear, partial differential equations is

approximated by & system of coupled Crank Nicholson type finite difference equations.




Implicit equations are solved for the enthalpy (energy content). temperature and velocity
fields simultaneously. A successive overrelaxation (SOR) iteration scheme with red/black
ordering is used to solve the difference equations in both the canister and the PCM.

In section 2 we present the analytic formulation of the heat transfer problems in the
canister and in the PCM. This iacludes the partial differential equation for heat flow in
the canister and the enthalpy formulation in the PCM including the constitutive relation
between enthalpy and temperature. Cylindrical polar coordinates are used throughout. In
section 3 we present the discrete mesh, the control volumes used and the implicit
difference equations that approximate the partial differential equations. This section
includes descriptions of the computation of equivalent thermal conductivities betwesn
dissimilar materials (canister, liquid PCM, solid PCM, etc.) and the "upwinding" scheme
used in the discrete convection terms. This scheme is nonstandard because the mesh used
is not uniform in the r and z coordinate directions. In section 4 we discuss the solution of
the discrete equations using SOR iterations with red/black ordering. The equations in the
canister are linear and the corresponding SOR scheme is standard except for the red/black
ordering. The equations in the PCM are nonlinear because the thermal conductivities in
solid and liquid differ and because the discrete, nonlinear, constitutive relation between
enthalpy and temperature must be satisfied simultaneously with the finite difference
equations. Thus the corresponding SOR scheme is nonstandard. The idea for the implicit,
discrete form of an enthalpy formulation for & phase change problem is due to Elliot and
Ockendon, [1]. However, both its implementation in cylindrical polar coordinates and its
application to a problem involving convection are new. Ii section 5 we discuss strategies
used to vectorize the algorithms for fast execution on the Cray X-MP supercomputer.
Logical variables were used as multipliers to avoid conditional branching in loops that
would prevent vectorization; multidimensional arrays were "unfolded” to increase the

average length of vectors; red/black ordering of nodes was used to avoid vector

o R




dependencies; and "phantom” node points were inserted into arrays to handle boundary
conditions in the midst of these long., unfolded vectors. These are applications and
extensions of ideas used in the numerical solution of Stefan type problems in a three
dimensional, rectangular parallelepiped [3). A paper documenting these methods, for

application to more general finite difference schemes, is in preparation [2].
2. ANALYTIC FORMULATION OF THE HEAT TRANSFER PROBLEMS
A. Heat Flow in the Canister.
The partial differential equation for heat conduction used to model the heat fiow in the
containing canister is
pc-a——div(k vT). (1)

where p, c, and k are the density, heat capacity and thermal conductivity of the canister

material respectively, and T is the temperature. In cylindrical polar coordinates, this is

pc%? :g;( k§-)+ 1,-0%- -ge—)+-°—(k.0_) )

for r, 0, and z inside the canister. The canister is identified as the union of the four sets
LE (left end), RE (right end), IC (inside cylinder) and OC (outside cylinder) defined by
LE ={r.,0,2 | Ry <7 <R ,0<6 27, 2u4<z2<2,),
RE ={r.0,z | Rppy <7 <Ry .0<0 <27, Zrjgpimner <2 < Zpgn ).
IC=(r.0.z | Rippy <R<R,,0<0 <2M.2,p <3 <Zypl
OC ={r.0,z | Rope—ster <7 < Ry .0<0 27, Z,s <2 <Zpnl

where R, and R, denote the radii of the inner and outer walls of the inside cylinder of
the canister respectively, Rine —ue and Roue denote the radii of the inner and outer
walls of the outside cylinder of the canister respectively, Z,4 and Z, denote the axial

coordinates of the inner and outer walls of the outside disk of the canister at the left
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respectively, and Z ;p~inner and Z ;5 denote the axial coordinates of the inner and outer
walls of the outside disk of the canister at the right respectively.
Flux boundary conditions are imposed at three of the four exterior boundaries of the

canister. The end walls are insulated and the incoming energy flux on the outer cylindrical

+ -
wall is  specified. (-%Zz—=0 at 2z =Zu,, -%—Z—=0 at 2z =2, ond

Keaniste -aazr— =g(¢) at r = R, .) At the fourth exterior boundary, the inner surface

of the inner cylindrical wall, it is only required that the energy flux be continuous across

+
the interface between the canister and the enclosed nickel cylinder. (-Kegnister -%i— =

“Knickol %Zr'— at 7 = Ryae.) At the interior boundaries of the canister, where it contacts
the PCM, it is only required that the energy flux be continuous across the interface

- +
between the canister and the anclosed PCM. -K.niser -%1;— = 'kpm%z:'— at r = R,

- Tt . r- T+
“Keanister %2;— = -kpcm%r— at 7 = Ripper —owter» 804~ conister %—z— = 'kpcm%z— at

T+ I~

kpcm denote the thermal conductivities of canister, nickel, and PCM respectively, and the
superscripts on the partial derivatives of the temperature indicate limiting values from

above and below.

B. Energy Redistribution in the PCM.

An enthalpy formulation that permits easy treatment of the successive melting and
freezing cycles is used to model the heat flow in the PCM. A convection term in the
equations accounts for the heat transfer caused by movement of the liquid PCM. The

partial differential equation used to model the heat flow in the PCM is

ﬂ(‘&‘u = div (k YT ) —div (pe v), (3)




where p is the density of the PCM, which is substantially different in the solid and liquid
phases, ¢ is the specific enthalpy, % is the thermal conductivity of the PCM (also different
in solid and liquid phases), T is the temperature, and v is the velocity. The enthalpy
furmulation consists of equation (3) coupled with the following constitutive relation

between pe and 7.

(P e = Puguis H)
Tree + for H <pe,
mels Pliid tiocd Piiguia P
Ty + —LE— for pe <0,

Psolid Crolid

where Ty is the melt temperature of the PCM, Pliia and pyuiq are the densities of the
liquid and solid PCM respectively, i 8nd G ate the heat capacities of the liquid and
solid PCM respectively, and H is the laten: heat of th= solid liquid phase transition.
Interactions with the containing canister define the boundary conditions for both the
beat flow and fluid flow problems in the region occupied by the PCM. At these bounduries
energy must be conserved, and so the energy flux must be continuous across the interface
between the canister and the PCM. The equations embodying this condition are given at
the end of the previous subsection. The velocity boundary conditions is that the liquid
PCM does not slip at the boundary with the canister, that is, all components of the

velocity are zero at the inner surfaces of the canister walls.




3. FORMULATION OF DISCRETE EQUATIONS
A. Definitions of the discrete mesh and control volumes.

A finite mesh of r, @ and z values is defined on the canister. The coordinate values are
ri,fori =0,1,---,1,0,,for j=0,1,---,J,and z;, fork = 0,1, - ,K. For parity
reasons having to do with the red/black ordering, /, J, and KX, the number of subdivisions
in the r, 0 and z coordinate directions respectively, are each required to be odd. With
Rirner » Rowser » Ziegr, and Z i, as before, we have rg = Rinner » 71 * Rowter » 20 = Zyyp. and 2x =
Z,in. Similarly 0, = zerc and 0; = 2. We think of the canister, and also the enclosed
region filled with PCM, as being divided into small "control volumes" whose edges are
defined by the mesh lines. The mesh is not required to be uniform in the r and z
directions, and the mesh we use is not uniform in these directions. We have assumed the
mesh to be uniform in the 0 direction. Thus 9 takes J +1 equally spaced values from zero
to 27 inclusive and A9 =27/J.

At the center of each conirol volume we identify a "node,” and we index these nodes
by the indices i, j, and k for i=0,1,---,I-1, j=0,1,--:-,J=1, and
k =0,1,---,K—1. The coordinates of the node p;;, are (ri4 +7;)/2, (0,41 +6,)/2,
(zg+1 + 2: )/2. The distances in each coordinate direction between an interior node, p;,; .
and its next nearest neighbors, p(i+1)k. Pi¢s+1k. and py+1). 8re (riga=—ri )2,
(0;42=0,;)(ri4y + ;) 4, (or, since the angular mesh is uniform, A8 (riyy + 7,)/2),
and (2, 42 = z; )/ 2 respectively.

We think of discrete temperature, density and enthalpy variables, T} . Pz and ;. as
being associated with the control volumes. We think of discrete velocity variables in each
coordinate direction, vry; ., vo, s and vz, as being associated with the underlying
partition that defines the interfaces between control volumes. Thus vrf), is the discrete
approximation to the radial fluid flow velocity at time level n at r =pr;,

0 =(0,,140,)2,2z =z, + 2 )/ 2, (this is the center of the interface between cells

-9-
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numbered (i-1)jk and ijk); v, is the discrete approximation to the azimuthal fluid flow
velocity at time level n at 0 =0, r = (ryy + 7, )/2, 2 = (2,4, + 2, )/ 2, (this is the
center of the interface between cells numbered i(j-1)k and ijk); and vz, is the discrete
approximation to the axial fluid flow velocity at time level n at z =z,
0 =(0,,1+0,)2,r =(r4 +r; )2, (this is the center of the interface between cells
numbered ij(k-1) and ijk). Figure 1 shows a typical control volume and the locations of

the six velocity components into and out of this cell.

node pip &t the
center of the (k%
control volume

(’kﬂoeloul, o)

N

(N o'ul))

Figure 1. A typical control volume.
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B. Discrete Equations for Heat Flow in the Canister.

For simulating heat flow in the canister, we have assumed that the walls of the canister
are only one control volume thick. The equations used are a Crank Nicholson like, finite
difference discretization of the partial differential equation (2). The equations are of the

form

ThE = TP
At

= 0 |terms at (n+1)'+(1-—9) lterms at n ] ()
for ijk running through all the control volumes in the canister. Since we have assumed
that the walls of the canister are only one cell thick, these are: i = 0 and i = I—1 with
j=01"---,J-1 and k£ =0,1,-+,K—1, for the inner and outer cylindrical walls
respectively; and £ =0 and £k = K—1 withi =1,2,:---,I=2 and j =0,1,:--,7—1,
for the end walls respectively. The parameter © is a number between zero and one that
gives the implicitness of the difference scheme. © is an input parameter, but we have
uniformly taken it to be one half, resulting in a Crank Nicholson scheme. The terms in
the parentheses in equation (5) are difference quotients in the three coordinate directions

corresponding to the terms on the right of equation (2).

The difference quotients in the r direction at time l¢vel n are

. T -1p TPy — T,
(pec) ’{rmk 'éir:l,,):k—r, ;lk -rk (urtm _'l:‘_ll)!)k l/'(r,ﬂ-i-r,)(r“.,-r,) (6)

whete p, ¢, and k are the density, heat capacity and thermal conductivity of the canister

material respectively. The difference quotients in the @ direction at time level n are

Thi = Ty -1

TR -7} 2
ek~ Lije =0 ]/ [(om-e, MWCripa + 7, )/2] }(7)

-1
(PC) (9,4,1-91)

k

-k

Since we have assumed that the grid is uniform in the @ direction, all the @ differences are

equal (A9 = 27/J). The difference quotients in the z direction at time level n are

(pc)—l[k Thway =T _ . _The = Tha-n)

(2ra2=2 )72 (2ear=2e-1)/2 l/(’*+1"‘k)~ (8)

~11-




No single difference equation for a cell in the canister has all three of these terms. This
is because the walls of the canister are considered to be only one cell thick and thus every
cell is affected by one or more boundary conditions. Each cell in the canister interacts
with canister material at four of its six interfaces, but at the other two interfaces one of
the boundary conditions holds. Cells in the ends of the canister have an insulated barrier
at the exterior face, cells in the outer cylinder have a specified incoming flux at the exterior
face, and cells in the inner cylinder have the nickel cylinder at the exterior face. All cells
in the canister, except those in the inner and outer rings of cells at the ends, have PCM at
an interior face. The two inner and outer rings at the ends of the canister (four in all)
have -anister material at both interior interfaces and do not interact with the PCM.

Since cells in the left and right end walls have insulating boundaries to the left and

Tho = T (-1
(zo—2-,)/2 snd

right respectively. the terms corresponding to lk

The = Th(x-
{k )X i (X-1)

(ix PR YR } are replaced by zero. For these same cells, except the innermost
+1 = K-

and outermost rings that do not interact with the PCM, the terms corresponding to

Ti”l "‘T‘no TI}(K—I) —T{;(x_z)
L L SN
l (23-20)/2 d |k (Zx -zx.g)/z

l. where the canister contacts the PCM,

Thx-1) = Thx-2)
(zx —zx-2)/2

TR, = T8
are replaced by {k,,(o“,,)(‘“ 49

ml and (K (x-1-4)

respectively where now K ;(o+4) and K ;) (x-1-4) are equivalent thermal conductivities
between PCM and cannister, and 7}, and T[j(x-z) are temperatures in the PCM. We
defer for a moment explaining the computation of the equivalent thermal conductivity
between PCM and canister.

For cells in the exterior cylindrical walls, the terms corresponding to

Thy = Th-pp

k
(resa=ria X2

are replaced by the negative of the incoming flux and, for all except

the first and last rings of cells that do not interact with the PCM, the terms corresponding

-12-




T = Th-21
(rrpa—r;1 )2

to lk I where the canister contacts the PCM, are replaced by

TU-yp = T2y . .
K (z-1-%) Cry 122 . Here, as before, k (;—3-4);x is an equivalent thermal

conductivity between PCM and cannister, and T'};-3),, is a temperature in the PCM.
For cells in the interior cylindrical walls, the terms corresponding to

The = Ton

k (ra=ro)/2

]. where the cannister contacts the PCM (which again excludes the first

The —T8n

and last rings of cells), are replaced by {k (o+4 ) Giero/3
2=To

» where K (o4 %) is an

equivalent thermal conductivity between the PCM and the cannister, and T, is a

o = TP
T =1 ] are

temperature in the PCM, and the terms corresponding to [k (ri=r )2
1— -

T8 = Tlnp
(ri=r_y)/2

replaced by (K (o-#4) l where K (o-4),x is an equivalent thermal

conductivity between cannister and the nickel core inside the central cylinder, '}, gt isa
temperature in the outermost ring of cells of the nickel core and r_; is the radial
coordinate of the inside edge of this ring of cells in the core.

In the angular direction we have a periodic boundary condition. That is, the interface
at @ = 0 is identified with the the interface at @ = 2. Thus, in the @ direction, the
neighbors of the first cell in the j direction (j = 0) are the second cell and the last cell
and, similarly, the neighbors of the last cell in the j direction (j = J—1) are the next to
last cell and the first cell. Thus, in the equations for cells with j = O, the entries in
equations (5) and (7) with subscripts j-1 are replaced with entries with subscripts J-1,
and similarly, in the equations for cells with j = J—1, the entries in equations (5) and
(7) with subscripts j +1 are replaced with entries with subscripts j = 0.

Equivalent thermal conductivities between dissimilar materials are computed using an

equivalent thermal resistance model. An expression for the equivalent thermal

-13-




conductivities can be d:rived by considering the thermal energy flow between two
juxtaposed slabs of dissimilar materials with different thicknesses. The condition to be
satisﬁedAis that the flux of energy is continuocus across the boundary between the slabs.
The equations are as follows.
k., T =T, - _lehur_Tl - _szZ—Thnr.
(wa+w,)/2 (wy/2) (wz2/2)

where 7', Tz and Ty, are the temperatures associated with the two slabs and with the
interface where they touch respectively, w, and w, are the widths of the slabs, k 1and k
are the thermal conductivities of the materials that make up the slabs, and k,, is the
equivalent thermal conductivity between them. This gives two independent linear
equations in the two unknowns T, and k o« Since the quantity T, is of no particular
interest, we do not solve for it. The expression for the desired equivaleni thermal
conductivity is

klkz(wl"'Wz)

kq= waki+wiks

9

This is the equation used to compute thermal conductivities between canister and PCM,

between canister and the nickel core, and between different phases of PCM.

C. Discrete Equations for Energy Redistribution in the PCM.

The discretization of the enthalpy equations, (3) and (4), is similar to that for equation
(2). However, since p, the material density and e, the specific enthalpy, vary together (it
is their product that occurs in the governing partial differential equations), we take this
product to be a single variable, denoted by "pe." In the following discussion, "pe” is to be
interpreted as a multicharacter symbol for this variable, and pefj: is an approximation to
the intsgral average of its value over the ijkth cell at time n. This is an approximation to

the product p e, but densities and enthalpies are not computed separately.
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As before, the discretization of the partial differential equation, (3), takes the form

n+l
—L——pc‘:At Pelie 6 | terms at (n +1) l +(1-8) lterms at n ]. (10)

for ijk running through all the control volumes in the PCM, i =1,2, - ,1-2,
j=0.1,---.J=1,and k =1,2, -+, K-2, (Which includes those filled only with vapor,
i. e. void, and those located next to canister walls). The parameter © in equation (10) is
the same parameter that appears in equation (5), a number between zero and one that gives
the implicitness of the difference scheme. We have uniformly taken © to be one half,
which gives a Crank Nicholson scheme. In addition to this discrete version of the partial

differential equation, the following discrete version of the constitutive relation must be

satisfied.

n+l H

Tt + L Sk Pliquid ) for Piiquid H < PCI;EH ,
Pliquid Cliguid

TI}L” = TM for 0693{,‘,"“6}),;,.“}1. (11)
+1
T eie +£m—- for pefiit < 0.
Psotid Crolid

The terms that appear in the parentheses in equation (10) are differences of incoming
and outgoing fluxes in the three coordinate directions for heat conduction and fiuid flow.
These involve values of T, pe and v. Because the PCM is completely surrounded by the
canister, the externally imposed boundary conditions do not affect the equations in the
PCM. The form of the equations for cells in the PCM that are neighbors of cells in the
canister is the same as that for interior cells. The only differences are that the thermal
conductivity of the canister material is used in equation (9) to compute the appropriate
equivalent thermal conductivities between adjacent cells, and the temperatures of cells in
the canister are known. Because in the fluid flow terms we use "upwinding" and this

requires a reparate discussion, we present first only the conductive heat transfer terms.
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The terms for conductive heat transfer in the r direction at time level n are

Ty = T
("H-z"":)
(rim+r)riga-r)

The = Thi-np
("tﬂ = ri—-1 )

rivr K Qo) = ikl

. (12)

where Ki44) and k) are equivalent thermal conductivities between the cell
numbered ijk and its neighbors in the radial direction numbered (i+1)jk and (i-1)jk
respectively. These are computed using equation (9) where the dissimilar materials are the
contents of the adjacent cells at time level n (and thus the superscript) which may be any
two from among: canister material, liquid PCM, solid PCM, "mush”" (partly liquid and
partly solid PCM), and void (whose thermal conductivity is taken to be zero).

A cell is mushy by definition if, for that cell, 0 < pe < Puquia H . where pypyq is the
density of the liquid PCM, and H is the latent heat of the liquid/solid phase transition of
the PCM. The thermal conductivity of a mushy cell is computed as & linear combination
of the thermal conductivities of liquid and solid PCM in which the coefficients are the
fraction of liquid and solid present respectively. The liquid fraction is given by
A =pe/(Pugia H) when 0 < pe < pygyq H. (A is zero when pe £ 0 and one when
Pe 2 Punia H.)

The terms for conductive heat transfer in the @ direction at time level n are

Tlysie = The _ The =TTy -1
k?u-&%)k (91“_91) k?()-’h)k (9} _9’-1)

(9“.1—9,) (r‘“-i-r‘ )/2 ¥

where k7()+4n and k}-y)u are equivalent thermal conductivities between the cell
numbered ijk and its neighbors in the azimuthal direction numbered i(j+1)k and i(j-1)k
respectively. These equivalent thermal conductivities are computed using equation (9) as
in the previous discussion, except that, because of the periodic boundary condition in the
azimuthal direction, here "canister” is not a possibility for one of the dissimilar materials.

Again, since we have assumed that the grid is uniform in the @ direction, all the




differences are equal to 27/J.

The terms for conductive heat transfer in the z direction at time level n are

Tha+) = Th

THhe = T -1)
k@) (2002 —2.)/2 k'b(k-u)(

Zre1 = Z-1)/2

1(zga1~2 ), (Q14)

where k) (t44) and K} -y4) are equivalent thermal conductivities between the cell
numbered ijk and its neighbors in the axial direction numbered ij(k+1) and ij(k-1)
respectively. These equivalent thermal conductivities are computed using equation (9) as
explained in the discussion of the r difference quotients following equation (12).

The flux terms for fluid flow at the faces of the ijkth cell in the 7, @ and z directions at

time level n are of the form

Tie1 PeU+ )k VIl ar) e = Ti PeY s )x VT2

. b1
(riaga=r)(rp+r )2 (152)
Pelty vk YOy 11y = pelly .y vO i (15b)
IY) (r‘+1+r, )/2 !
and
Pel)(k4n) V2l +1) = P&l —s) V2 (15¢)

241" 2
respectively. Here vr, v0, and vz are the fluid velocities in the r, 9 and z directions
respectively, A9 is the constant angular increment, 2 7/ J, and the quantities with the half
integral subscripts are interpolated values of pe at the intérfaces between adjacent cells.
The "no slip" boundary condition at the canister walls implies that all components of the
velocities are zero at the smallest and largest values of r and z. However, the discrete
velocities are associated with locations in the centers of the faces of cells in the PCM. (See
figure 1.) The discrete "no slip” boundary conditions are that all vr's are zero at the
largest and smallest values of ¢ and all vz's are zero at the largest and smallest values of k.

(None of the v@'s are required to be zero.)

Two things contribute to the computation of the interpolated pe quantities. These are
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the nonuniformity of the grid and possible "upwinding." In the absence of upwinding, we
would take the linear interpolant, pen 4y = B pensy + (1—8) pe,,. where B is the ratio of
the distance from the cell interface to the mth node to the total distance from the mth
node to the (m+1)th node. Here, and for the next few paragraphs, we suppress the time
dependence and any distinction among coordinate directions and in place of multiple
indices for subscripts use only "m" to denote a single, generic, varying index.

Upwinding is a tactic of weighting the "upwind" quantity more heavily in the
computation of the coefficient of the velocity. Numerically this introduces dissipation that
tends to reduce the waves created by the hyperbolic character of this term in the
differential equation. A physically motivated justification is that the coeficient is partially

carried along by the velocity. The usual upwinding formula, for a uniform grid, is
Pemsss Vmar = Pemet (Vmay = | Vpsr ) + pep (v + B vma 1),

where x €[0, 1] is the degree of upwinding. With u =1 we have full upwinding and
Pem 4y is either pep, or pen 41 depending on the sign of vy 4.

A simple alternate formula combining upwinding and unequal cell sizes, made up by
taking a weighted linear combination of the terms on the right of the previous formula.
would be

Pemi Vms1 = Bpemsy (Vi —p Vmer 1) + (1-8)pen (Vpnsy + bl Vyag t)

But this has serious shortcomings. In particular, if B is not one half, it gives obviously

incorrect answers both when pey, 4y = pe,, .
Pemes Vmsr = Pepay {Vmar + (1 =28) lv,yy I},

and when u = 1,
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Pem+ss Vmet =
2(1-B)pens1Vm+1. if Vms41 <O.

The formula we use is
Pem+s Vm+r = P€m4 lB( 11 ) Vpar + 8 (Va1 = 1 Va4y 1)/2 l (16)
+ pen l( l-ﬁ)(i"l‘)"’m'ﬂ + “(Vm-ﬂ + lvpa 1)/2 }»

where u is the degree of upwinding and B is the ratio of the width of the mth cell to the
sum of the widths of the mth and (m+1)th cells. (Since nodes are located at centers of
cells, this defines the same B as before.)

Writing this explicitly for vj, 41 >0 and v, 4+; <0, and rearranging slightly, gives

B(1-u)pensy + (1 =B(1=1)) pen lv,m. if vms1> 0,

Periss V41 =

1-(1-8)(1—) |pemn +(1-8)(1=pn)pen le+l' ifva41 <0,

which shows that for u and B in (0, 1) the coefficient of the velocity is always a convex
linear combination of the pe values at the neighboring nodes. Thus pen+y is always
between pe,, and pen 41, and when these agree, pe,4+y equals their common value. When
B is one half, equation (16) gives the usual upwinding formula. When u is zero, equation
(16) gives the linear interpolant for the coefficient of the velocity. When u is one,
equation (16) gives full upwinding, and for any positive 4. upwinding persists even in the
limits as B—0 and B—1.

There is a considerable lore, but little theory, associated with a strategy for selecting &

"good” value for u. Even this lore is only applicable in one dimension. A general
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guideline is, "4 > 0 is necessary but u as small as possible is good." Obviously u should
depend on the velocity, but the form of this dependence is unknown. We made the value
of 4 an input parameter. In the absence of a reasonable selection criterion, we took its

value to be one half.

To succinctly state the several flux terms corresponding to fluid flow in equation (10),

we define a function whose evaluation formula is the right hand side of equation (16).

F(p.B.¢.¥.v) = ¢ [B(l—n)v +ulv—=1Iy I)/Zl an

+ v

(1=-8)(1=p)v + u(v + v I)/2l.

Our intention is to substitute the degree of upwinding for u, and to substitute pe and |
velocity values for ¢, ¥ and v respectively. To supply appropriate 8 values for this
function, we  define parameters, Bri =(ry =r1 Y (riey = ricy). and
Bz = (2, — 2,1 )/ (2441~ 24~1). Br and Bz are ratios of distances in the r and z
directions respectively. We define 80 to be one half since we have assumed that the mesh

is uniform in the angular direction.

With these definitions, the terms of equations (15a) - (15¢) are as follows. The radial

terms are

riss FCp. Bri. pelivnye. pele vrlionye ) = ri F (. Brioy. pefis. peli—yyn, vri )

(risa=r )(rip 41, )2 . (18a)
the angular terms are
F(&ﬁﬁpﬂ;m&-ﬂd}k-vOl'(“.m ) - F(“‘BO'P‘I;*'P‘&J-U&-VOO& ) )
80 (rigy + 1, )2 .
and the axial terms are
F(“o Bz, 0p30(k+1) 'pcb'koVZI) (k+1) ) - F(“'sz -l’p‘bk'p.{;(k-l) -Vzlh ) (189

(241=2, )
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4. SOLUTION OF THE DISCRETE EQUATIONS .
A. Discrete Equations for Heat Flow in the Canister.

Since there is no phase change in the canister, and since for this computation the
discrete temperatures associated with nodes in the PCM and in the enclosed nickel core are
considered to be known, the discrete equations for heat flow in the canister are linear. An
SOR scheme with red/black ordering is used to solve this linear system. This forms the
inner iteration procedure for the canister module. Of course, the discrete temperatuives at
nodes in the PCM and in the enclosed nickel core must also be updated at each smiccessive
time step, but this is done in separate inner iteration procedures according to a complete,
outer iteration strategy. This outer iteration strategy involves the computations for the
complete problem including all heat flows, fluid flow and void update calculations and its
explanation is beyond the scope of this report.

The linear system to be solved is of the form
(1+CRf; +CRj +COJ, +COfj, + CZy + CZj ) TP
= CRAETU e — CRR Ty — COS TV han = Zh, (19

= COG TR e = CZifi THH 1y — CZn THt -y

for ijk running through the indices of the cells in the canisteér; i = 0 and i = I—1 with
j=01,.J-1and £k =0,1,-' - ,K—1, for the inner and outer cylindrical walls
respectively; and £k =0 and £ = X~1 with i =1,2,*-+ , /=2 and j =0,1,* -+ ,7-1,
for the end walls respectively. Here the CR’s, CO°'s, and CZ's are the coefficients of the
corresponding temperatures in equations (6), (7) and (8) respectively multiplied by 6 At.
The right hand side, Z[};, is the sum of T, and (1—0 )A¢ times the terms from
equations (6), (7) and (8) evaluated at the nth time level, plus, for the cells with
§ mJ—1, (1=0)A¢ times the known flux terms at the exterior cylindrical boundary

evaluated at the nth time level, plus 6 A¢ times the known flux terms at the exterior
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cylindrical boundary evaluated at the (n+1)th time level. (Recall that. because of the
boundary conditions, some of the coefficients. CR, C8, and CZ, will be missing or zero, and
further that, for cells with i = 0, the temperatures of neighbor cells in the nickel core,
i = ~—1, are known.)

Since the number of cells in each end disk of the canister and in both the inner and
outer cylinders of the canister is odd, we can use the "natural ordering” to number the
entire list of cells so that each odd numbered cell has only even numbered cells for
neighbors and each even numbered cell has only odd numbered cells for neighbors. With
the cells numbered in this way we think of the odd numbered cells as "red” and the even
numbered cells as "black.” Then any update with red/black ordering consists of an update
of the discrete temperatures for red (odd numbered) cells followed by an update for the
black (even numbered) cells. The motivation for using the red/black ordering is to make
these computations vectorize for fast execution on the Cray X-MP supercomputer.

The SOR iterate for each cell is a linear combination of the Gauss-Seidel update and the
previous iterate. The Gauss-Seidel update is computed and then a multiple of the
difference between the Gauss-Seidel update and the previous iterate is added to the
previous iterate. If we add a new superscript "p" to the discrete tumperature variable and

us~ this to denote the iteration number, then the SOR update can be written as

ThEle*t = THVP 4+  |TGRFLIH — Tptte |,

where 7G is the Gauss-Seidel update. The multiplier, w, is the overrelaxation parameter, &
number in (1,2) for overrelazation. This parameter is an input variable, so the user may
sclect it as he sees fit. As a result of numerical experiments using the given data of the
problem, we settled on a value of 1.3 for w. The computation is performed for {jk running
through the indices of the cells in the canister first for the red nodes using old information
(from the previous iteration) at all the black nodes, and then for the black nodes using the

latest information at all the red nodes.
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The Gauss-Seide! update is computed from the following rearrangement of (19).

2B, + CR T + CR TUHyTe + CO B TRTA:
TG PH = (20)
+ CO 5 TIAN + CZ THEMT) + CZ5 TR
where the superscript m is "p" when red nodes are being updated and "p+1" when black
nodes are being updated. This iteration is continued until the difference between the
Gauss-Seidel update and the previous iterate is less than a specified tolerance.

The computation of Zf};. on the right of equation (19), requires evaluating all the
difference quotients at the nth time level that would give the result of an explicit update
of the enthalpies and temperatures. We take the result of this explicit update, with the
maximum stable, explicit, time step size (as computed at the previous time step), as the
zeroth iterate for T/;!. The maximum stable, explicit, time step size is time dependent
since equivalent thermal conductivities between canister and PCM change as the PCM
melts and refreezes. It is determined dynamically while the coefficients that go into the
terms of Zf}; are being computed. However, since this determination is not completed
until after at least one iteration of the procedure, the maximum stable time step size lags

one time step.

B. Discrete Equations for Energy Redistribution in the PCM.

Since there is & phase change in the PCM, and since the thermophysical parameters of
the solid and liquid PCM differ, and since the discrete nonlinear constitutive relation,
equation (11), must be satisfied simultaneously with the difference equations, the discrete
equations for heat flow in the PCM are nonlinear. A modified SOR scheme with red/black
ordering is used to solve this mildly nonlinear system. This forms the inner iteration for
the PCM module. For this computation, the discrete temperatures at nodes in the canister

and the velocities and void locations are considered to be known.
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The nonlinear system to be solved is similar to that represented by equation (19).

(1 + Cpeliihua I Pefii! + CTH loeat TH

— CpeR i * peltlye — CpeR ™ * pelthyn — Cped ¢+ pelitian
— Cpeb ;82 pelLiy — CpeZji**  pefilise1y — CreZ i *2pefiliyy | = Zf . (21)
= CTR}A M Tt — CTRA P Tty — CTO S Th b

~ CTO G T e — CTZ P M Tty = CTZ50 42 Tht )y

for ijk running through the indices of the cells in the PCM, i = 1,2---,7=2,
j=01,,J=landk =1,2,'*-,K=2. Here the CpeR's, Cped's and CpeZ's are the
coefficients of the correspc;nding pe's in equations (15), and hence (18), (with the
velocities evaluated at the (n+1)th time level but with the current iterate from the
separate flow update module), multiplied by @ Az, and the coefficient Cpelittua is just the
sum of these. Similarly the CTR's, CT0's and CTZ's are the coefficients of the
corresponding temperatures in equations (12), (13) and (14) respectively (with the
equivalent thermal conductivities evaluated at the (n+1)th time level but with the current
iterate for the discrete temperature values, i. . the pth iterate for the red nodes and the
(p+1)th iterate for the black nodes.) multiplied by 6 Az, and the coefficient CT[} Loy is
just the sum of these. The term on the right hand side of equation (21), Zf}; . is the sum
of pefj, and (1—6 ) A¢ times the difference quotients from equations (12) through (15)
evaluated at the nth time level. (Here, because the boundary conditions do not directly
affect the heat transfer problem in the PCM, none of the CTR, CT0, and CT'Z coefficients
will be missing or zero, but for cells that abut the canister walls, discrete temperatures of
the neighboring cells in the canister are known. Furthermore, because of the discrete "no
slip" boundary conditions on the velocities at the canister walls, some of the coefficients,
CpeR's and CpeZ's but not Cpe@'s, that involve these velocities, will be zero for cells

that abut the canister walls.)




Since the number of cells in the inner and outer cylinders of the canister is odd and
since the walls of the canister are only one cell thick, the number of cells in each cylinder
of PCM is als) odd. We apply the same natural numbering to the cells in each cylinder of
PCM so that in each cylinder each odd numbered cell has only even numbered cells for
neighbors and each even numbered cell has only odd numbered cells for neighbors. Since
each cylinder is identically numbered, each cell has identically numbered cells as neighbors
in the next innermost and outermost cylinders.

The cylinders of PCM are naturally indexed by the radial index "i." We think of this
cylinder index as defining a parity and use this to define the red/black ordering for the
complete array of cells in the PCM. In the odd numbered cylinders, we think of the odd
numbered cells as "red" and the even numbered cells as "black.” While, in the even
numbered cylinders, we think of the even numbered cells as "red" and the odd numbered
cells as "black." With this assignment each red cell in the entire array has only black cells
for neighbors and each black cell in the entire array has only red cells for neighbors.
Then, as before, any update with red/black ordering consists of an update of the pe and
temperature variables for the red cells followed by their update for the black cells. Again,
the motivation for using the red/black ordering is to make the computations vectorize for
the Cray X-MP.

To avoid oscillations about the melt temperature in the iterative solution of the mildly
nonlinear implicit equations, Elliot and Ockendon, [1], recommended taking the Gauss-
Seidel update as the new iterate for the temperature if the previous iterate and the Gauss-
Seidel update are on opposite sides of the melt temperature but using an SOR iteration if
the previous iterate and the Gauss-Seidel update are on the same side of the melt
temperature. They were analyzing a finite element scheme instead of a finite difference
scheme, but the motivation for making this decision is independent of that distinction. We

have taken their advice and selectively applied the SOR scheme in the computation of the
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discrete temperature in each cell. We defer momentarily discussing this selective
application. After the new iterate for the temperature has been determined, the pe
variable at the advanced time step is computed using this temperature in a rearranged and

slightly reorganized version of equation (21).

As usual, the SOR iterate for the discrete temperature in each cell in the PCM is a linear
combination of the Gauss-Seidel update and the previous iterate. The Gauss-Seidel update
is computed by solving equations (11) and (21) simultaneously. A unique solution of
these equations exists, and is éasily computed, since the temperature is a nondecreasing
function of the enthalpy. This computation affects the evaluation of the Gauss-Seidel
update, but it does not change the SOR scheme. If the SOR iterate is to be used, then a
multiple of the difference between the Gauss-Seidel update and the previous iterate is
added to the previous iterate. This multiplier is the overrelazation parameter, w. Elliot
and Ockendon, [1], give a rather complicated suggestion for determining a good value for
the overrelaxation parameter w. We have not taken their suggestion, but used the same

value input for the canisier module, 1.3. The SOR update is computed from

+1,p + +1, L . .
THEvP+l = TP 4 TGRe* T;’}k"”l.

whers TG is the Gauss-Seidel update, for ijk running through all the nodes of the PCM,
first for the red nodes using old information (from the previous iteration) at all the black
nodes, and then for the black nodes using the latest information at all the red nodes.

The Gauss-Seidel update is computed from the simultaneous solution of equations (11)
and (21) as follows. We rearrange equation (21) so that only the two terms involving
pelli! and T} are on the left, add and subtract appropriate terwis involving Try and

rewrite the resulting equation in a form suitable for iterative solution as

(1 +A)peldt?*t + B(INMP* = Ty ) = [104™ Touis 1 0, (22)

where "A" and "B" denote the negatives of the sums of the coefficients of pef}i! and TP

-26-




in the right hand side of equation (10) respectively (as identified in equations (12) - (18)),
“p" is the iteration counter, and [ ]3s™( Tp .0) denotes the right hand side of equation
(10) with T and pefli! replaced by Ty and zero respectively throughout, and the
superscript “m" indicates that the mth (where m is "p" if the ijkth node is a red node and
*p+1" if it is a black node) iterate value is to be used for pe®*! and T"*! with subscripts
other than "ijk." Although the coeficients A and B do depend on node location and time
level, for economy of notation, we have omitted their subscripts and superscripts, (which
would include "m" as well as "n"). The computation of the equivalent thermal
conductivities is done as discussed after equation (21). Note that both of the coefficients A
and B are positive.

To solve equations (11) and (22) simultaneously, we consider the three, mutually
exclusive possibilities that the updated state of the ijkth cell is solid, liquid or mush. In

the first case: pef}f1-?+! € 0, T2+ € T, , equation (11) is

Pefi! Pt — Py Cotia (THEVPH =Ty ) = 0,
and the solution is

n+lp+l =
Tije Tonar + (1+ A)Puiig Cotis + B’

In the second case: e H € pefjiP*), T, € THHP*+1, equation (11) is

ntl,p+t

= Puiquid uquid (T} ~Toer) = Puguia H,
and the solution is

[)36™ T 1 0) = (2. + A)H

T, +1,p41 = T +
sk melt (1 + A )pu'.“ Cliguid + B

In the third case, 0 < pef}f*?*! < pyiy H, and TP P+ = T, ., is the second condition,
equation (11), and the solution also.
The quantity [ 1}¢™( Zomey . 0) determines the choice from among the three possibilities.

If [104™ T .0) € 0, then the first alternative is selected and TRV P & Ty If
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(1 + A)pugia H S[)}4™ Tras .0). then the second alternative is selected and
Tmee € THFV2*L. Finally, if 0< [006™ T .0) < (1 + A )Piguia H. then the third
alternative is selected, and T} 1P = T, .

The computational strategy is as follows. First [ ]}4™ T\ .0) is evaluated and then
used to compute the corresponding Gauss-Seidel update for the temperature as one of ths
three alternatives just given. To avoid oscillations about the melt temperature, SOR is
selectively applied at each node as follows . If the previous iterate and the Gauss-Seidel
update are on the same side of the melt temperature, then SOR is used; but if the previous
iterate and the Gauss-Seidel update are not on the same side of the melt temperature or if
either of these is exactly the melt temperature, then the Gauss-Seidel update is taken as
the new iterate. After the new value for the temperature has been determined, the new

value for pe is computed using equation (22) rearranged in the form

pefjilP*t = [[15™( Ty 0) = B(THE e+ =T, )70+ 4). (23)
This insures that the updated temperatures and enthalpies are self consistent. This
iteration is continued until the difference between the Gauss-Seidel update and the
previous iterate is less than 4 specified tolerance.

As in the iteration for the determination of discrete temperatures in the canister, the
results of an explicit update, with the maximum stabie step size (as computed at the
previous time step). are used as the zeroth iterates for pef}#* and Thi'. This computation
is almost free since the determination of Z{)x. on the right of equation (21), requires
evaluating all the needéd difference quotients at the nth time level. Since thermal
conductivities of cells in the PCM change as the PCM melts and refreezes, the maximum
stable explicit time step size is time dependent. It is determined dynamically while
computing the coefficients that go into the terms of Z{}; . But, since its determination is not

completed until one step of the iteration has been completed, it does lag one time step.

-28-




The experimentally determined maximum, econoinically feasible, implicit time step size
for the SOR scheme is about twenty times the maximum stable explicit time step size. At
this step size, convergence requires a’<.ut ten to fifteen iterations and the implicit scheme is
cost effective. That is, since one iteration of the implicit scheme requires about as much
computation as one explicit update would, an implicit scheme that converges in fifteen
iterations with a time step size equal to twenty times the maximum explicit time step size
requires only about seventy five percent as much computation as an explicit scheme would.
The iteration will converge for larger time steps, but the number of iterations increases so
that the computation is not economical when compared with an explicit scheme. (This
brief analysis does not tell the whole story. When the transition from insolation to earth
shadow occurs, a significant transient is introduced and the number of iterations necessary
for convergence increases significantly. But in the midst of either of these periods with
constant incomin, flux, the process is physically much more stable and the number of
iterations required for convergence drops dramatically. Thus on the average the implicit

scheme is much more economical than an explicit one would be.)

5. VECTORIZATION FOR THE Cray X-MP

In the sense of documenting the algorithms implemented, the following section. is
complete. As a description of generally applicable techniques for vectorizing finite
difference schemes for numerical solution of partial differential equations, it is only an
introduction. Based on what was learned from this effort, we have begun timing and
optimization studies on strategies for vectorizing such schemes. But that is another story.
Vector processors, such as the Cray family of supercomputers, excel at performing
identical sequences of operations on long vector operands. Thus the strategy for
veciorization is to arrange computations so that they consist of such sequences. Logical
tests within a loop could lead to different paths through the loop and hence to different

sequences of computations in the loop. Thus a loop containing such a logical branch will
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not vectorize. In addition, only the innermost in a set of nested loops will vectorize. Thus
nested loops should be avoided wherever conveniently possible. Finally, there is a certain
initialization cost associated with starting a vector computation, so it is pointless to
vectorize a computation for only a short vector and economically advantageous to
maximize the lengths of vector operands. A concerted effort has been made to vectorize
the computations just described for fast execution on the Cray X-MP.

One strategy used to avoid logical branches within a loop is to evaluate a logical
variable as a function of the condition to be tested (with values "1" for "true” and "0" for
"false") and use it as a multiplier to choose between two possible values (both of which
bave been computed). For example, the following scrap of code

if ((tgauss.lt.tmelt .and. temp(i).1t.tmelt).or.
# (tgauss.gt.tmelt .and. temp(i).gt.tmelt) ) then
temp(i) = temp(i) + omega * (tgauss - temp(i))
els:emp(i) = tgauss
endif
that would implement successive overrelaxation if the Gauss-Seidel update for a new
temperature were on the same side of the melt temperature as the previous iterate but

would use the Gauss-Seidel update directly if not, has been replaced by code logically

equivalent to

tvalue = temp(i) + omega * (tgauss - temp(i))
fvalue = tgauss

nt = one - (tgauss - tmelt) * (temp(i) - tmelt)
factor = max(1,nt) - max(0,nt)

temp(i) = factor * tvalue + (one - factor) * fvalue

This code does the same computation with no logical test or branch. The integer "nt” is
less than one if the test is satisfied but greater than or equal to one if it is not. The
multiplier "factor" is the logical variable used to select the update value for the
temperature. "factor” is one if the test is satisfied (nt < 1), and zero otherwise (nt = 1).

Both the values are computed, but only one is stored. This example shows the logic of
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what has been done. This idea has been used many times in the code with various degrees

of subtlety.

An integer Heaviside step function at one is very useful in defining appropriate logical
variables. "levi(k) = 1 + max(0.k) - max(1,k)," defines such a function with levi(k) = 1
for k 2 1 and levi(k) = O for k < 1. In the scrap of code shown above, 1 - levi(nt) was
used to define the logical multiplier because the test should be failed if either of the
temperatures tested were exactly the melt temperature (which would result in the value
of "nt" being one).

Some logical decisions require that choices be made from among more than two
alternatives. In such cases logical variables have been combined to select the correct result.
For example, to label the cells of PCM as solid (1), mush (2), or liquid (3) the following,
nonvectorizable, code could have been used.

do 10 i = 1,]asti
do 10 k = 1,lastk
do 10 j = O,lastj
if (rhoe(j.k.i).le.zero) then
1bl(j.k.i) = 1
else
if (rhoe(j k.i).ge.dlheat) then
161(j.k.i) = 3
else
1b1(j.k,i) = 2
endif

endif
10 continue

Recall from equation (11) that a cell is liquid if pe is greater than or equal to the product
Puquia H . sclid if pe is less than or equal to zero, and mushy otherwise.

To make this code vectorizable, the if-then-else constructs can be replaced with a single
equation involving three Boolean variables using the "levi" function defined above. The
following shows how this can be done and in addition how to treat the three dimensional

arrays, "rhoe” and "1bl", as if they were one dimensional arrays, thus avoiding the nested

loop and simultaneously making longer vector operands.
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last = (lastj + 1) * lastk * lasti - 1
do 20 j = 0,last
i1 = levi(int(one - rhoe(j.1,1)))
i3 = levi(int(one + rhoe(j.1,1) - dlheat))
i2 =(1-i1)*(1-i3)
b1(j1,1) =il +2%i2 + 3 %3
10 continue
Here i1, i2 and i3 are logical variables for "liquid," "mush,” and "solid" respectively, and
again the idea of setting the computed quantity equal to a sum of products of logical
variables multiplied with the corresponding values has been used. (This loop is offered for
demonstration purposes only. Because the computation is trivial, the vectorized version of
this loop is slower, for reasonable sized vectors, than the scalar version. This is not true
for similar but more computationally intensive loops.)

The reader may object that a smart compiler, or at least a smart operating system,
would (or should) detect that the loop index goes beyond its limits. But neither the CFT
compile on the Cray X-MP, nor the FORTRAN 77 compiler on our VAX bave objected
(yet) to compiling or executing such code. Of course it is necessary to arrange loops
correctly so that it is the first index of the array that is used to run through the entries.
This is necessary because FORTRAN arrays are stored in memory so that the first index
varies most rapidly.

Execution of a vectorized loop causes data to be pipelined through special hardware so
that multiple sets of the loop instructions (with different index values) are executed
simultaneously. Thus, at any given instant while such a loop is being executed, there are
multiple values of the running index for which the indicated computations are being done.
This may create go called "vector dependencies” that prevent vectorization. The following
is an example of a loop that will not vectorize because of these vector dependencies.

do 10i = 1,imax

F(i)=C1*F(i) + C2*F(i-1) + C3 * F(i+1) + C4 * F(i-idelt) + C5 * F(i+idelt)
10 continue

The compiler will refuse to set up the vector pipelining for such a loop because for a given
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value of the running index, "i", the updated values of F(i-1) and F(i~idelt) that would be
used to compute F(i) if the loop were executed in scalar mode might be concurrently in the
vector pipeline and thus not available.

In the computation of the Gauss-Seidel updates for temperatures in both the canister
and the PCM, numerous loops of this form occur. Recall that "i* denotes the radial index,
"{" denotes the angular index, and "X" denotes the axial index. The nonvectorizable form
of the main loop in the PCM update would be essentially as follows.

do 10 i = 2, imax-1
do 10 k = 2, kmax-1
do 10 j= 1, jmax
test = 2(j.k.i) + C1 * tmelt + C2 * ( temp(j-1.k.i) + temp(j+1.k.i))
# + C3 * (temp(jk-1i) + temp(j.k+1,i)) + C4 * (temp(j.k.i-1) + temp(j.k.i+1))
if (test.1e.0.0) tgauss = tmelt + test / ( C1 + csol )
if (0.0.1t.test.and.test.1t.dlheat) tgauss = tmelt
if (dlheat.le.test) tgauss = tmelt + ( test - dlheat ) / ( C1 + cliq )
if ((tgauss.lt.tmelt .and. t.empé(j.k.i).lt.tmelt).or.
# (tgauss.gt.tmelt .and. temp(j.k.i).gt.tmelt) ) then
temp(j.k,i) = temp(j k.i) + omega * (tgauss - temp(j.k.D))
else
temp(j.k.i) = tgauss

endif
10 continue

The variables "test” and "2" in this loop are [ 1}:™( Ty . 0) and Z[}y from equations (22)
and (21) respectively. (Numerous nasty details have been omitted here including pe
terms from equation (21), determination of the temperature dependent values of the
coefficients, and the update of pe after the determination of the temperature. For this
explanation, we ignore these.) We bave already shown how to avoid logical tests and
conditional branches (even with the three possibilities for the value of "test"). Now we
show how to circumvent the apparent vector dependencies.

The array in which temperature values are stored, temp(jk.i), is dimensioned as
"temp(0:jmax+1,1:kmax,1:imax)." The angular index was n.ade the first index to make it
easier to implement the periodic boundary condition in the angular variable. A copy of

T(jmax.k.i) is stored in T(0.k,i) and similarly a copy of T(1.k.i) is stored in T(jmax+1.k.i)
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for each pair of indices "i" and "k." We refer to these duplicates as "phantom entries.”
Their values are updated, i. e. copied over, after each completed iteration.

These phantoms make necessary some additional computations, but they also make
possible treating each cylinder of the canister and PCM and each end disk of the canister as
a single vector. Whether the time spent on these additional computations is recovered by
being able to do a fast vector computation on a longer vector operand is a delicate question
that requires individual analysis. For this particular calculation the trade off appeared to
be marginally favorable, but cases for which it is not are easily constructed.

To remove the vector dependencies in such loops, "jmax” and "kmax" were required to
be odd and the loops were written in a form analogous to the following.

do 10i=2, imax~1
irb=irb+ 1
if (irb.eq.3) irb= 1

do 10 j = irb, (jmax + 2)*kmax - 2, 2
test = C1 * tmelt + C2 * ( temp(j-1.1.1) + temp(j+1,1,i))

#* + C3 * (temp(j-jmax-2,1.i) + temp(j+jmax+2,1.i))
# + C4 * (temp(j.1.i-1) + temp(j.1.i+1))
16 .::ominue

where for the first pass (when the red entries of the array are updated) "irb” is initially
set to zero and for the second pass (when the black entries are updated) "irb’ is initially
stt to one, and the ellipsis indicates the omiited computations rearranged to avoid
conditional branches as explained above. The vectorizing FORTRAN compiler still detects
the apparent vector dependencies and would refuse to vectorize such a loop except that a
compiler directive has been used to force the vectorization. This is legitimate since it is
known that the required entries with lower numbered indices are of the opposite color.
They cannot be concurrently in the vector pipeline because they are not being updated.
Before and between the two passes through this nested loop, additional computation is
done to save the values of certain "real” red entries and to recompute certain phantom red

entries. This saving of some entries and recomputing of others is necessary because in the
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first pass the red phantoms are updated using values from the wrong neighbor locations.
The correct neighbor locations of the red phantoms are also red entvies. Thus if their
values were not saved before the first execution of the nested loop, then the old values
would be unavailable to correctly update the red phantoms. These red phantoms should
be correctly updated so that the Gauss-Seidel update of all the black entries will be done
with updated information at all red entries. It is not necessary to correctly update the
black phantoms because after the black update, in which the phantoms are again updated
using values from the wrong neighbor locations, all the phantoms are reloaded with copies
of values computed at the corresponding "real” locations

Considerable effort was expended to make the algorithms explained here vectorize.
Logical tests and branches were removed, apparent vector dependencies were eliminated or
circumvented, and computations were organized to increase the average length of the
vector operands. Nevertheless, because they were just too large, most of the loops did not
vectorize. There is a limit to the amount of computation that can be done in a vectorized
loop, and most of the loops in the canister and PCM modules exceeded this limit. It is
clear how to overcome this obstacle. The computations must be broken into smaller pieces
with intermediate results stored in long, temporary storage vectors. Lack of time and

money prevented our doing this.
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